2022AMC10B - 数学 (10)

版权:美国数学协会(Mathematical Association of America, MAA)

下面表达式的值是多少?

\[ \frac{\left( {1 + \frac{1}{3}}\right) \left( {1 + \frac{1}{5}}\right) \left( {1 + \frac{1}{7}}\right) }{\sqrt{\left( {1 - \frac{1}{{3}^{2}}}\right) \left( {1 - \frac{1}{{5}^{2}}}\right) \left( {1 - \frac{1}{{7}^{2}}}\right) }} \]

(A) \( \sqrt{3} \)

(B) 2

(C) \( \sqrt{15} \)

(D) 4

(E) \( \sqrt{105} \)

(F) Leave as blank | 不作答

2022 MAA AMC 10B

\[ \{ 1,2,3,\ldots ,{10}\} \text{,} \]

\[ \{ {11},{12},{13},\ldots ,{20}\} \text{,} \]

\[ \{ {21},{22},{23},\ldots ,{30}\} \text{,} \]

\( \vdots \)

\[ \{ {991},{992},{993},\ldots ,{1000}\} \text{.} \]

How many of these sets contain exactly two multiples of 7 ?

考虑以下的 100 个集合,每个集合中有 10 个元素:

\[ \{ 1,2,3,\ldots ,{10}\} \text{,} \]

\[ \{ {11},{12},{13},\ldots ,{20}\} \text{,} \]

\[ \{ {21},{22},{23},\ldots ,{30}\} \text{,} \]

\[ \{ {991},{992},{993},\ldots ,{1000}\} \]

在这些集合中, 恰好包含两个 7 的倍数的集合有多少个?

(A) 40

(B) 42

(C) 43

(D) 49

(E) 50

(F) Leave as blank | 不作答

\[ \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{2021}{{2022}!} \]

can be expressed as \( a - \frac{1}{b!} \) , where \( a \) and \( b \) are positive integers. What is

\( a + b \) ?

和式

\[ \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{2021}{{2022}!} \]

可以表达成 \( a - \frac{1}{b!} \) 的形式,其中 \( a \) 和 \( b \) 是正整数. 问 \( a + b \) 的值是多少?

(A) 2020

(B) 2021

(C) 2022

(D) 2023

(E) 2024

(F) Leave as blank | 不作答

\[ {a}_{1}x + {b}_{1}y + {c}_{1}z = 0 \]

\[ {a}_{2}x + {b}_{2}y + {c}_{2}z = 0 \]

\[ {a}_{3}x + {b}_{3}y + {c}_{3}z = 0 \]

where each of the coefficients is either 0 or 1 and the system has a solution other than \( x = y = z = 0 \) . For example, one such system is \( \langle {1x} + {1y} + \) \( {0z} = 0,{0x} + {1y} + {1z} = 0,{0x} + {0y} + {0z} = 0\rangle \) with a nonzero solution of \( \left( {x, y, z}\right) = \left( {1, - 1,1}\right) \) . How many such systems of equations are there? (The equations in a system need not be distinct, and two systems containing the same equations in a different order are considered different.)

考虑由三个线性方程组成的,未知数为 \( x, y \) 和 \( z \) 的方程组:

\[ {a}_{1}x + {b}_{1}y + {c}_{1}z = 0 \]

\[ {a}_{2}x + {b}_{2}y + {c}_{2}z = 0 \]

\[ {a}_{3}x + {b}_{3}y + {c}_{3}z = 0 \]

其中的每个系数为 0 或 1,并且方程组有除去 \( x = y = z = 0 \) 之外的解. 例如, 一个这样的方程组是 \( \langle {1x} + {1y} + {0z} = 0,{0x} + {1y} + {1z} = 0,{0x} + {0y} + {0z} = 0\rangle \) , 它有非零解 \( \left( {x, y, z}\right) = \left( {1, - 1,1}\right) \) . 问共有多少个这样的方程组? (一个方程组中的方程允许是相同的, 并且两个包含同样的方程, 但排列顺序不同的方程组被认为是不同的.)

(A) 302

(B) 338

(C) 340

(D) 343

(E) 344

(F) Leave as blank | 不作答

2022 MAA AMC 10B

蚂蚁 Amelia 在数轴上从 0 开始,按以下方式爬行. 对于 \( n = 1,2,3 \) , Amelia 从区间(0,1)中随机独立且均匀地选择持续时间 \( {t}_{n} \) 和步长 \( {x}_{n} \) . 在爬行过程的第 \( n \) 步, Amelia 沿正向移动 \( {x}_{n} \) 个单位,用时 \( {t}_{n} \) 分钟. 如果在第 \( n \) 步移动期间,所经过的总时间超过 1 分钟,则她在该步结束时停止;否则,她会继续下一步,最多一共走 3 步. 问 Amelia 停止在大于 1 的数所对应的位置处的概率是多少?

(A) \( \frac{1}{3} \)

(B) \( \frac{1}{2} \)

(C) \( \frac{2}{3} \)

(D) \( \frac{3}{4} \)

(E) \( \frac{5}{6} \)

(F) Leave as blank | 不作答 24. Consider functions \( f \) that satisfy

\[ \left| {f\left( x\right) - f\left( y\right) }\right| \leq \frac{1}{2}\left| {x - y}\right| \]

for all real numbers \( x \) and \( y \) . Of all such functions that also satisfy the equa-

tion \( f\left( {300}\right) = f\left( {900}\right) \) , what is the greatest possible value of

\[ f\left( {f\left( {800}\right) }\right) - f\left( {f\left( {400}\right) }\right) \text{?} \]

考虑具有以下性质的函数 \( f \) : 对于所有的实数 \( x \) 和 \( y \) ,

\[ \left| {f\left( x\right) - f\left( y\right) }\right| \leq \frac{1}{2}\left| {x - y}\right| . \]

在所有这样的函数中,如果还要求满足等式 \( f\left( {300}\right) = f\left( {900}\right) \) ,那么

\[ f\left( {f\left( {800}\right) }\right) - f\left( {f\left( {400}\right) }\right) \]

的最大可能值是多少?

(A) 25

(B) 50

(C) 100

(D) 150

(E) 200

(F) Leave as blank | 不作答

2022 MAA AMC 10B

\[ {S}_{n} = \mathop{\sum }\limits_{{k = 0}}^{{n - 1}}{x}_{k}{2}^{k} \]

Suppose \( 7{S}_{n} \equiv 1\left( {\;\operatorname{mod}\;{2}^{n}}\right) \) for all \( n \geq 1 \) . What is the value of the sum

\[ {x}_{2019} + 2{x}_{2020} + 4{x}_{2021} + 8{x}_{2022}? \]

在数列 \( {x}_{0},{x}_{1},{x}_{2},\ldots \) 中,每个 \( {x}_{k} \) 均为 0 或 1 . 对于每个正整数 \( n \) ,定义

\[ {S}_{n} = \mathop{\sum }\limits_{{k = 0}}^{{n - 1}}{x}_{k}{2}^{k} \]

假设对所有 \( n \geq 1 \) ,有 \( 7{S}_{n} \equiv 1\left( {\;\operatorname{mod}\;{2}^{n}}\right) \) . 问和式

\[ {x}_{2019} + 2{x}_{2020} + 4{x}_{2021} + 8{x}_{2022} \]

的值是多少?

(A) 6

(B) 7

(C) 12

(D) 14

(E) 15

(F) Leave as blank | 不作答

2022 MAA AMC 10B

Answers.

ADDAB ABBDD BCEBD DCBCD EECBA